A New First-order Framework for Orthogonal Constrained Optimization Problems
نویسندگان
چکیده
In this paper, we consider a class of orthogonal constrained optimization problems, the feasible region of which is called the Stiefel manifold. Our new proposed framework combines a function value reduction step with a symmetrization step. Different from the existing approaches, the function value reduction is conducted in the Euclidean space instead of the Stiefel manifold or its tangent space. We construct two types of algorithms based on this new framework. The first type is gradient reduction based algorithms which consists of gradient reflection (GR) and gradient projection (GP) two implementations. The other one adopts a column-wise block coordinate descent (CBCD) scheme with a novel idea for solving the corresponding CBCD subproblem inexactly. Theoretically, we can prove that both GR/GP with a fixed stepsize and CBCD belong to our framework, and any clustering point of the iterates generated by the proposed framework is a first-order stationary point. Preliminary experiments illustrate that our new framework is of great potential.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملA New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems
Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...
متن کاملTrim and Maneuverability Analysis Using a New Constrained PSO Approach of a UAV
Performance characteristic of an Unmanned Air Vehicle (UAV) is investigated using a newly developed heuristic approach. Almost all flight phases of any air vehicle can be categorized into trim and maneuvering flights. In this paper, a new envelope called trim-ability envelope, is introduced and sketched within the conventional flight envelope for a small UAV. Optimal maneuverability of the inte...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کامل